Lemma 21.28.4. Let $f : (\mathop{\mathit{Sh}}\nolimits (\mathcal{C}), \mathcal{O}_\mathcal {C}) \to (\mathop{\mathit{Sh}}\nolimits (\mathcal{D}), \mathcal{O}_\mathcal {D})$ be a morphism of ringed topoi. Let $K$ be an object of $D(\mathcal{O}_\mathcal {D})$. Assume
$f$ is flat,
$K$ is bounded below,
$H^ q(K) \to Rf_*f^*H^ q(K)$ is an isomorphism.
Then $K \to Rf_*f^*K$ is an isomorphism.
Comments (0)