The Stacks project

Lemma 85.12.4. In Situation 85.3.3. The category of cartesian sheaves of sets (resp. abelian groups) is equivalent to the category of pairs $(\mathcal{F}, \alpha )$ where $\mathcal{F}$ is a sheaf of sets (resp. abelian groups) on $\mathcal{C}_0$ and

\[ \alpha : (f_{\delta _1^1})^{-1}\mathcal{F} \longrightarrow (f_{\delta _0^1})^{-1}\mathcal{F} \]

is an isomorphism of sheaves of sets (resp. abelian groups) on $\mathcal{C}_1$ such that $(f_{\delta ^2_1})^{-1}\alpha = (f_{\delta ^2_0})^{-1}\alpha \circ (f_{\delta ^2_2})^{-1}\alpha $ as maps of sheaves on $\mathcal{C}_2$.

Proof. We abbreviate $d^ n_ j = f_{\delta ^ n_ j} : \mathop{\mathit{Sh}}\nolimits (\mathcal{C}_ n) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}_{n - 1})$. The condition on $\alpha $ in the statement of the lemma makes sense because

\[ d^1_1 \circ d^2_2 = d^1_1 \circ d^2_1, \quad d^1_1 \circ d^2_0 = d^1_0 \circ d^2_2, \quad d^1_0 \circ d^2_0 = d^1_0 \circ d^2_1 \]

as morphisms of topoi $\mathop{\mathit{Sh}}\nolimits (\mathcal{C}_2) \to \mathop{\mathit{Sh}}\nolimits (\mathcal{C}_0)$, see Simplicial, Remark 14.3.3. Hence we can picture these maps as follows

\[ \xymatrix{ & (d^2_0)^{-1}(d^1_1)^{-1}\mathcal{F} \ar[r]_-{(d^2_0)^{-1}\alpha } & (d^2_0)^{-1}(d^1_0)^{-1}\mathcal{F} \ar@{=}[rd] & \\ (d^2_2)^{-1}(d^1_0)^{-1}\mathcal{F} \ar@{=}[ru] & & & (d^2_1)^{-1}(d^1_0)^{-1}\mathcal{F} \\ & (d^2_2)^{-1}(d^1_1)^{-1}\mathcal{F} \ar[lu]^{(d^2_2)^{-1}\alpha } \ar@{=}[r] & (d^2_1)^{-1}(d^1_1)^{-1}\mathcal{F} \ar[ru]_{(d^2_1)^{-1}\alpha } } \]

and the condition signifies the diagram is commutative. It is clear that given a cartesian sheaf $\mathcal{G}$ of sets (resp. abelian groups) on $\mathcal{C}_{total}$ we can set $\mathcal{F} = \mathcal{G}_0$ and $\alpha $ equal to the composition

\[ (d_1^1)^{-1}\mathcal{G}_0 \to \mathcal{G}_1 \leftarrow (d_1^0)^{-1}\mathcal{G}_0 \]

where the arrows are invertible as $\mathcal{G}$ is cartesian. To prove this functor is an equivalence we construct a quasi-inverse. The construction of the quasi-inverse is analogous to the construction discussed in Descent, Section 35.3 from which we borrow the notation $\tau ^ n_ i : [0] \to [n]$, $0 \mapsto i$ and $\tau ^ n_{ij} : [1] \to [n]$, $0 \mapsto i$, $1 \mapsto j$. Namely, given a pair $(\mathcal{F}, \alpha )$ as in the lemma we set $\mathcal{G}_ n = (f_{\tau ^ n_ n})^{-1}\mathcal{F}$. Given $\varphi : [n] \to [m]$ we define $\mathcal{G}(\varphi ) : (f_\varphi )^{-1}\mathcal{G}_ n \to \mathcal{G}_ m$ using

\[ \xymatrix{ (f_\varphi )^{-1}\mathcal{G}_ n \ar@{=}[r] & (f_\varphi )^{-1}(f_{\tau ^ n_ n})^{-1}\mathcal{F} \ar@{=}[r] & (f_{\tau ^ m_{\varphi (n)}})^{-1}\mathcal{F} \ar@{=}[r] & (f_{\tau ^ m_{\varphi (n)m}})^{-1}(d^1_1)^{-1}\mathcal{F} \ar[d]^{(f_{\tau ^ m_{\varphi (n)m}})^{-1}\alpha } \\ & \mathcal{G}_ m \ar@{=}[r] & (f_{\tau ^ m_ m})^{-1}\mathcal{F} \ar@{=}[r] & (f_{\tau ^ m_{\varphi (n)m}})^{-1}(d^1_0)^{-1}\mathcal{F} } \]

We omit the verification that the commutativity of the displayed diagram above implies the maps compose correctly and hence give rise to a sheaf on $\mathcal{C}_{total}$, see Lemma 85.3.4. We also omit the verification that the two functors are quasi-inverse to each other. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0D7I. Beware of the difference between the letter 'O' and the digit '0'.