The Stacks project

Special case of [Theorem 3.2.4, BBD] without boundedness assumption.

Theorem 20.45.8 (BBD gluing lemma). In Situation 20.45.3 assume

  1. $X = \bigcup _{U \in \mathcal{B}} U$,

  2. for $U, V \in \mathcal{B}$ we have $U \cap V = \bigcup _{W \in \mathcal{B}, W \subset U \cap V} W$,

  3. for any $U \in \mathcal{B}$ we have $\mathop{\mathrm{Ext}}\nolimits ^ i(K_ U, K_ U) = 0$ for $i < 0$.

Then there exists an object $K$ of $D(\mathcal{O}_ X)$ and isomorphisms $\rho _ U : K|_ U \to K_ U$ in $D(\mathcal{O}_ U)$ for $U \in \mathcal{B}$ such that $\rho ^ U_ V \circ \rho _ U|_ V = \rho _ V$ for all $V \subset U$ with $U, V \in \mathcal{B}$. The pair $(K, \rho _ U)$ is unique up to unique isomorphism.

Proof. A pair $(K, \rho _ U)$ is called a solution in the text above. The uniqueness follows from Lemma 20.45.4. If $X$ has a finite covering by elements of $\mathcal{B}$ (for example if $X$ is quasi-compact), then the theorem is a consequence of Lemma 20.45.6. In the general case we argue in exactly the same manner, using transfinite induction and Lemma 20.45.7.

First we use transfinite recursion to choose opens $W_\alpha \subset X$ for any ordinal $\alpha $. Namely, we set $W_0 = \emptyset $. If $\alpha = \beta + 1$ is a successor, then either $W_\beta = X$ and we set $W_\alpha = X$ or $W_\beta \not= X$ and we set $W_\alpha = W_\beta \cup U_\alpha $ where $U_\alpha \in \mathcal{B}$ is not contained in $W_\beta $. If $\alpha $ is a limit ordinal we set $W_\alpha = \bigcup _{\beta < \alpha } W_\beta $. Then for large enough $\alpha $ we have $W_\alpha = X$. Observe that for every $\alpha $ the open $W_\alpha $ is a union of elements of $\mathcal{B}$. Hence if $\mathcal{B}_\alpha = \{ U \in \mathcal{B}, U \subset W_\alpha \} $, then

\[ S_\alpha = (\{ K_ U\} _{U \in \mathcal{B}_\alpha }, \{ \rho _ V^ U\} _{V \subset U\text{ with }U, V \in \mathcal{B}_\alpha }) \]

is a system as in Lemma 20.45.4 on the ringed space $W_\alpha $.

We will show by transfinite induction that for every $\alpha $ the system $S_\alpha $ has a solution. This will prove the theorem as this system is the system given in the theorem for large $\alpha $.

The case where $\alpha = \beta + 1$ is a successor ordinal. (This case was already treated in the proof of the lemma above but for clarity we repeat the argument.) Recall that $W_\alpha = W_\beta \cup U_\alpha $ for some $U_\alpha \in \mathcal{B}$ in this case. By induction hypothesis we have a solution $(K_{W_\beta }, \{ \rho ^{W_\beta }_ U\} _{U \in \mathcal{B}_\beta })$ for the system $S_\beta $. Then we can consider the collection $\mathcal{B}_\alpha ^* = \mathcal{B}_\alpha \cup \{ W_\beta \} $ of opens of $W_\alpha $ and we see that we obtain a system $(\{ K_ U\} _{U \in \mathcal{B}_\alpha ^*}, \{ \rho _ V^ U\} _{V \subset U\text{ with }U, V \in \mathcal{B}_\alpha ^*})$. Note that this new system also satisfies condition (3) by Lemma 20.45.4 applied to the solution $K_{W_\beta }$. For this system we have $W_\alpha = W_\beta \cup U_\alpha $. This reduces us to the case handled in Lemma 20.45.6.

The case where $\alpha $ is a limit ordinal. Recall that $W_\alpha = \bigcup _{\beta < \alpha } W_\beta $ in this case. For $\beta < \alpha $ let $(K_{W_\beta }, \{ \rho ^{W_\beta }_ U\} _{U \in \mathcal{B}_\beta })$ be the solution for $S_\beta $. For $\gamma < \beta < \alpha $ the restriction $K_{W_\beta }|_{W_\gamma }$ endowed with the maps $\rho ^{W_\beta }_ U$, $U \in \mathcal{B}_\gamma $ is a solution for $S_\gamma $. By uniqueness we get unique isomorphisms $\rho _{W_\gamma }^{W_\beta } : K_{W_\beta }|_{W_\gamma } \to K_{W_\gamma }$ compatible with the maps $\rho ^{W_\beta }_ U$ and $\rho ^{W_\gamma }_ U$ for $U \in \mathcal{B}_\gamma $. These maps compose in the correct manner, i.e., $\rho _{W_\delta }^{W_\gamma } \circ \rho _{W_\gamma }^{W_\beta }|_{W_\delta } = \rho ^{W_\delta }_{W_\beta }$ for $\delta < \gamma < \beta < \alpha $. Thus we may apply Lemma 20.45.7 (note that the vanishing of negative exts is true for $K_{W_\beta }$ by Lemma 20.45.4 applied to the solution $K_{W_\beta }$) to obtain $K_{W_\alpha }$ and isomorphisms

\[ \rho _{W_\beta }^{W_\alpha } : K_{W_\alpha }|_{W_\beta } \longrightarrow K_{W_\beta } \]

compatible with the maps $\rho _{W_\gamma }^{W_\beta }$ for $\gamma < \beta < \alpha $.

To show that $K_{W_\alpha }$ is a solution we still need to construct the isomorphisms $\rho _ U^{W_\alpha } : K_{W_\alpha }|_ U \to K_ U$ for $U \in \mathcal{B}_\alpha $ satisfying certain compatibilities. We choose $\rho _ U^{W_\alpha }$ to be the unique map such that for any $\beta < \alpha $ and any $V \in \mathcal{B}_\beta $ with $V \subset U$ the diagram

\[ \xymatrix{ K_{W_\alpha }|_ V \ar[r]_{\rho _ U^{W_\alpha }|_ V} \ar[d]_{\rho _{W_\beta }^{W_\alpha }|_ V} & K_ U|_ V \ar[d]^{\rho _ U^ V} \\ K_{W_\beta } \ar[r]^{\rho _ V^{W_\beta }} & K_ V } \]

commutes. This makes sense because

\[ (\{ K_ V\} _{V \subset U, V \in \mathcal{B}_\beta \text{ for some }\beta < \alpha }, \{ \rho _ V^{V'}\} _{V \subset V'\text{ with }V, V' \subset U \text{ and }V, V' \in \mathcal{B}_\beta \text{ for some }\beta < \alpha }) \]

is a system as in Lemma 20.45.4 on the ringed space $U$ and because $(K_ U, \rho ^ U_ V)$ and $(K_{W_\alpha }|_ U, \rho _ V^{W_\beta }\circ \rho _{W_\beta }^{W_\alpha }|_ V)$ are both solutions for this system. This gives existence and uniqueness. We omit the proof that these maps satisfy the desired compatibilities (it is just bookkeeping). $\square$


Comments (0)

There are also:

  • 4 comment(s) on Section 20.45: Glueing complexes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0D6C. Beware of the difference between the letter 'O' and the digit '0'.