Lemma 115.26.13. We have the following canonical $k$-vector space identifications:
In Deformation Problems, Example 93.4.1 if $x_0 = (k, V)$, then $T_{x_0}\mathcal{F} = (0)$ and $\text{Inf}_{x_0}(\mathcal{F}) = \text{End}_ k(V)$ are finite dimensional.
In Deformation Problems, Example 93.5.1 if $x_0 = (k, V, \rho _0)$, then $T_{x_0}\mathcal{F} = \mathop{\mathrm{Ext}}\nolimits ^1_{k[\Gamma ]}(V, V) = H^1(\Gamma , \text{End}_ k(V))$ and $\text{Inf}_{x_0}(\mathcal{F}) = H^0(\Gamma , \text{End}_ k(V))$ are finite dimensional if $\Gamma $ is finitely generated.
In Deformation Problems, Example 93.6.1 if $x_0 = (k, V, \rho _0)$, then $T_{x_0}\mathcal{F} = H^1_{cont}(\Gamma , \text{End}_ k(V))$ and $\text{Inf}_{x_0}(\mathcal{F}) = H^0_{cont}(\Gamma , \text{End}_ k(V))$ are finite dimensional if $\Gamma $ is topologically finitely generated.
In Deformation Problems, Example 93.7.1 if $x_0 = (k, P)$, then $T_{x_0}\mathcal{F}$ and $\text{Inf}_{x_0}(\mathcal{F}) = \text{Der}_ k(P, P)$ are finite dimensional if $P$ is finitely generated over $k$.
Comments (0)