Lemma 75.7.4. Let $S$ be a scheme. Consider a cartesian diagram of algebraic spaces over $S$
with $f$ locally of finite type. If $T$ is a closed subset of $|X|$ proper over $Y$, then $|g'|^{-1}(T)$ is a closed subset of $|X'|$ proper over $Y'$.
Lemma 75.7.4. Let $S$ be a scheme. Consider a cartesian diagram of algebraic spaces over $S$
with $f$ locally of finite type. If $T$ is a closed subset of $|X|$ proper over $Y$, then $|g'|^{-1}(T)$ is a closed subset of $|X'|$ proper over $Y'$.
Proof. Observe that the statement makes sense as $f'$ is locally of finite type by Morphisms of Spaces, Lemma 67.23.3. Let $Z \subset X$ be the reduced induced closed subspace structure on $T$. Denote $Z' = (g')^{-1}(Z)$ the scheme theoretic inverse image. Then $Z' = X' \times _ X Z = (Y' \times _ Y X) \times _ X Z = Y' \times _ Y Z$ is proper over $Y'$ as a base change of $Z$ over $Y$ (Morphisms of Spaces, Lemma 67.40.3). On the other hand, we have $T' = |Z'|$. Hence the lemma holds. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)