Lemma 98.18.3. Let $S$ be a scheme. Let $p : \mathcal{X} \to \mathcal{Y}$ and $q : \mathcal{Z} \to \mathcal{Y}$ be $1$-morphisms of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. If $\mathcal{X}$, $\mathcal{Y}$, and $\mathcal{Z}$ satisfy (RS*), then so does $\mathcal{X} \times _\mathcal {Y} \mathcal{Z}$.
Proof. The proof is exactly the same as the proof of Lemma 98.5.3. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: