Lemma 71.2.11. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a map of quasi-coherent $\mathcal{O}_ X$-modules. Assume that for every $x \in |X|$ at least one of the following happens
$\mathcal{F}_{\overline{x}} \to \mathcal{G}_{\overline{x}}$ is injective, or
$x \not\in \text{WeakAss}(\mathcal{F})$.
Then $\varphi $ is injective.
Comments (0)