Lemma 15.36.4. With same assumptions as Lemma 15.36.3 if $M = \bigcup _{n \geq 1} N_ n$ for some closed subgroups $N_ n$, then $N_ n$ is open for some $n$.
Proof. If not, then $U_ n = M \setminus N_ n$ is dense for all $n$ and we get a contradiction with Lemma 15.36.3. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)