The Stacks project

Lemma 70.21.1. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. Assume $f$ finite type and $Y$ locally Noetherian. Let $y \in |Y|$ be a point in the closure of the image of $|f|$. Then there exists a commutative diagram

\[ \xymatrix{ \mathop{\mathrm{Spec}}(K) \ar[r] \ar[d] & X \ar[d]^ f \\ \mathop{\mathrm{Spec}}(A) \ar[r] & Y } \]

where $A$ is a discrete valuation ring and $K$ is its field of fractions mapping the closed point of $\mathop{\mathrm{Spec}}(A)$ to $y$. Moreover, we can assume that the point $x \in |X|$ corresponding to $\mathop{\mathrm{Spec}}(K) \to X$ is a codimension $0$ point1 and that $K$ is the residue field of a point on a scheme étale over $X$.

Proof. Choose an affine scheme $V$, a point $v \in V$ and an étale morphism $V \to Y$ mapping $v$ to $y$. The map $|V| \to |Y|$ is open and by Properties of Spaces, Lemma 66.4.3 the image of $|X \times _ Y V| \to |V|$ is the inverse image of the image of $|f|$. We conclude that the point $v$ is in the closure of the image of $|X \times _ Y V| \to |V|$. If we prove the lemma for $X \times _ Y V \to V$ and the point $v$, then the lemma follows for $f$ and $y$. In this way we reduce to the situation described in the next paragraph.

Assume we have $f : X \to Y$ and $y \in |Y|$ as in the lemma where $Y$ is an affine scheme. Since $f$ is quasi-compact, we conclude that $X$ is quasi-compact. Hence we can choose an affine scheme $W$ and a surjective étale morphism $W \to X$. Then the image of $|f|$ is the same as the image of $W \to Y$. In this way we reduce to the case of schemes which is Limits, Lemma 32.15.1. $\square$

[1] See discussion in Properties of Spaces, Section 66.11.

Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CMC. Beware of the difference between the letter 'O' and the digit '0'.