Lemma 73.4.4. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $\{ X_ i \to X\} _{i \in I}$ be a smooth covering of $X$. Then there exists an étale covering $\{ U_ j \to X\} _{j \in J}$ of $X$ which refines $\{ X_ i \to X\} _{i \in I}$.
Proof. First choose a scheme $U$ and a surjective étale morphism $U \to X$. For each $i$ choose a scheme $W_ i$ and a surjective étale morphism $W_ i \to X_ i$. Then $\{ W_ i \to X\} _{i \in I}$ is a smooth covering which refines $\{ X_ i \to X\} _{i \in I}$. Hence $\{ W_ i \times _ X U \to U\} _{i \in I}$ is a smooth covering of schemes. By More on Morphisms, Lemma 37.38.7 we can choose an étale covering $\{ U_ j \to U\} $ which refines $\{ W_ i \times _ X U \to U\} $. Then $\{ U_ j \to X\} _{j \in J}$ is an étale covering refining $\{ X_ i \to X\} _{i \in I}$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: