The Stacks project

Lemma 73.4.4. Let $S$ be a scheme. Let $X$ be an algebraic space over $S$. Let $\{ X_ i \to X\} _{i \in I}$ be a smooth covering of $X$. Then there exists an étale covering $\{ U_ j \to X\} _{j \in J}$ of $X$ which refines $\{ X_ i \to X\} _{i \in I}$.

Proof. First choose a scheme $U$ and a surjective étale morphism $U \to X$. For each $i$ choose a scheme $W_ i$ and a surjective étale morphism $W_ i \to X_ i$. Then $\{ W_ i \to X\} _{i \in I}$ is a smooth covering which refines $\{ X_ i \to X\} _{i \in I}$. Hence $\{ W_ i \times _ X U \to U\} _{i \in I}$ is a smooth covering of schemes. By More on Morphisms, Lemma 37.38.7 we can choose an étale covering $\{ U_ j \to U\} $ which refines $\{ W_ i \times _ X U \to U\} $. Then $\{ U_ j \to X\} _{j \in J}$ is an étale covering refining $\{ X_ i \to X\} _{i \in I}$. $\square$


Comments (0)

There are also:

  • 1 comment(s) on Section 73.4: Étale topology

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CFV. Beware of the difference between the letter 'O' and the digit '0'.