The Stacks project

Example 55.16.1. Let $k$ be an algebraically closed field. Let $Z$ be a smooth projective curve over $k$ of positive genus $g$. Let $n \geq 1$ be an integer prime to the characteristic of $k$. Let $\mathcal{L}$ be an invertible $\mathcal{O}_ Z$-module of order $n$, see Algebraic Curves, Lemma 53.17.1. Pick an isomorphism $\varphi : \mathcal{L}^{\otimes n} \to \mathcal{O}_ Z$. Set $R = k[[\pi ]]$ with fraction field $K = k((\pi ))$. Denote $Z_ R$ the base change of $Z$ to $R$. Let $\mathcal{L}_ R$ be the pullback of $\mathcal{L}$ to $Z_ R$. Consider the finite flat morphism

\[ p : X \longrightarrow Z_ R \]

such that

\[ p_*\mathcal{O}_ X = \text{Sym}^*_{\mathcal{O}_{Z_ R}}(\mathcal{L}_ R)/(\varphi - \pi ) = \mathcal{O}_{Z_ R} \oplus \mathcal{L}_ R \oplus \mathcal{L}_ R^{\otimes 2} \oplus \ldots \oplus \mathcal{L}_ R^{\otimes n - 1} \]

More precisely, if $U = \mathop{\mathrm{Spec}}(A) \subset Z$ is an affine open such that $\mathcal{L}|_ U$ is trivialized by a section $s$ with $\varphi (s^{\otimes n}) = f$ (with $f$ a unit), then

\[ p^{-1}(U_ R) = \mathop{\mathrm{Spec}}\left( (A \otimes _ R R[[\pi ]])[x]/(x^ n - \pi f) \right) \]

The reader verifies that the morphism $X_ K \to Z_ K$ of generic fibres is finite étale. Looking at the description of the structure sheaf we see that $H^0(X, \mathcal{O}_ X) = R$ and $H^0(X_ K, \mathcal{O}_{X_ K}) = K$. By Riemann-Hurwitz (Algebraic Curves, Lemma 53.12.4) the genus of $X_ K$ is $n(g - 1) + 1$. In particular $X_ K$ has genus $1$, if $Z$ has genus $1$. On the other hand, the scheme $X$ is regular by the local equation above and the special fibre $X_ k$ is $n$ times the reduced special fibre as an effective Cartier divisor. It follows that any finite extension $K'/K$ over which $X_ K$ attains semistable reduction has to ramify with ramification index at least $n$ (some details omitted). Thus there does not exist a universal bound for the degree of an extension over which a genus $1$ curve attains semistable reduction.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CEH. Beware of the difference between the letter 'O' and the digit '0'.