The Stacks project

Proposition 53.13.7. Let $k$ be a field of characteristic $p > 0$. Let $f : X \to Y$ be a nonconstant morphism of proper smooth curves over $k$. Then we can factor $f$ as

\[ X \longrightarrow X^{(p^ n)} \longrightarrow Y \]

where $X^{(p^ n)} \to Y$ is a nonconstant morphism of proper smooth curves inducing a separable field extension $k(X^{(p^ n)})/k(Y)$, we have

\[ X^{(p^ n)} = X \times _{\mathop{\mathrm{Spec}}(k), F_{\mathop{\mathrm{Spec}}(k)}^ n} \mathop{\mathrm{Spec}}(k), \]

and $X \to X^{(p^ n)}$ is the $n$-fold relative frobenius of $X$.

Proof. By Fields, Lemma 9.14.6 there is a subextension $k(X)/E/k(Y)$ such that $k(X)/E$ is purely inseparable and $E/k(Y)$ is separable. By Theorem 53.2.6 this corresponds to a factorization $X \to Z \to Y$ of $f$ with $Z$ a nonsingular proper curve. Apply Lemma 53.13.4 to the morphism $X \to Z$ to conclude. $\square$


Comments (0)

There are also:

  • 7 comment(s) on Section 53.13: Inseparable maps

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CD2. Beware of the difference between the letter 'O' and the digit '0'.