Proposition 53.13.7. Let $k$ be a field of characteristic $p > 0$. Let $f : X \to Y$ be a nonconstant morphism of proper smooth curves over $k$. Then we can factor $f$ as
\[ X \longrightarrow X^{(p^ n)} \longrightarrow Y \]
where $X^{(p^ n)} \to Y$ is a nonconstant morphism of proper smooth curves inducing a separable field extension $k(X^{(p^ n)})/k(Y)$, we have
\[ X^{(p^ n)} = X \times _{\mathop{\mathrm{Spec}}(k), F_{\mathop{\mathrm{Spec}}(k)}^ n} \mathop{\mathrm{Spec}}(k), \]
and $X \to X^{(p^ n)}$ is the $n$-fold relative frobenius of $X$.
Proof.
By Fields, Lemma 9.14.6 there is a subextension $k(X)/E/k(Y)$ such that $k(X)/E$ is purely inseparable and $E/k(Y)$ is separable. By Theorem 53.2.6 this corresponds to a factorization $X \to Z \to Y$ of $f$ with $Z$ a nonsingular proper curve. Apply Lemma 53.13.4 to the morphism $X \to Z$ to conclude.
$\square$
Comments (0)
There are also: