Lemma 17.19.1. Let $X$ be a topological space. Let $\mathcal{B}$ be a basis for the topology on $X$. Let $\mathcal{F}$ be a sheaf of sets on $X$. There exists a set $I$ and for each $i \in I$ an element $U_ i \in \mathcal{B}$ and a finite set $S_ i$ such that there exists a surjection $\coprod _{i \in I} j_{U_ i!}\underline{S_ i} \to \mathcal{F}$.
17.19 Constructible sheaves of sets
Let $X$ be a topological space. Given a set $S$ recall that $\underline{S}$ or $\underline{S}_ X$ denotes the constant sheaf with value $S$, see Sheaves, Definition 6.7.4. Let $U \subset X$ be an open of a topological space $X$. We will denote $j_ U$ the inclusion morphism and we will denote $j_{U!} : \mathop{\mathit{Sh}}\nolimits (U) \to \mathop{\mathit{Sh}}\nolimits (X)$ the extension by the empty set described in Sheaves, Section 6.31.
Proof. Let $S$ be a singleton set. We will prove the result with $S_ i = S$. For every $x \in X$ and element $s \in \mathcal{F}_ x$ we can choose a $U(x, s) \in \mathcal{B}$ and $s(x, s) \in \mathcal{F}(U(x, s))$ which maps to $s$ in $\mathcal{F}_ x$. By Sheaves, Lemma 6.31.4 the section $s(x, s)$ corresponds to a map of sheaves $j_{U(x, s)!}\underline{S} \to \mathcal{F}$. Then
is surjective on stalks and hence surjective. $\square$
Lemma 17.19.2. Let $X$ be a topological space. Let $\mathcal{B}$ be a basis for the topology of $X$ and assume that each $U \in \mathcal{B}$ is quasi-compact. Then every sheaf of sets on $X$ is a filtered colimit of sheaves of the form with $U_ a$ and $V_ b$ in $\mathcal{B}$ and $S_ a$ and $S_ b$ finite sets.
Proof. By Lemma 17.19.1 every sheaf of sets $\mathcal{F}$ is the target of a surjection whose source $\mathcal{F}_0$ is a coproduct of sheaves the form $j_{U!}\underline{S}$ with $U \in \mathcal{B}$ and $S$ finite. Applying this to $\mathcal{F}_0 \times _\mathcal {F} \mathcal{F}_0$ we find that $\mathcal{F}$ is a coequalizer of a pair of maps
for some index sets $A$, $B$ and $V_ b$ and $U_ a$ in $\mathcal{B}$ and $S_ a$ and $S_ b$ finite. For every finite subset $B' \subset B$ there is a finite subset $A' \subset A$ such that the coproduct over $b \in B'$ maps into the coproduct over $a \in A'$ via both maps. Namely, we can view the right hand side as a filtered colimit with injective transition maps. Hence taking sections over the quasi-compact opens $V_ b$, $b \in B'$ commutes with this coproduct, see Sheaves, Lemma 6.29.1. Thus our sheaf is the colimit of the cokernels of these maps between finite coproducts. $\square$
Lemma 17.19.3. Let $X$ be a spectral topological space. Let $\mathcal{B}$ be the set of quasi-compact open subsets of $X$. Let $\mathcal{F}$ be a sheaf of sets as in Equation (17.19.2.1). Then there exists a continuous spectral map $f : X \to Y$ to a finite sober topological space $Y$ and a sheaf of sets $\mathcal{G}$ on $Y$ with finite stalks such that $f^{-1}\mathcal{G} \cong \mathcal{F}$.
Proof. We can write $X = \mathop{\mathrm{lim}}\nolimits X_ i$ as a directed limit of finite sober spaces, see Topology, Lemma 5.23.14. Of course the transition maps $X_{i'} \to X_ i$ are spectral and hence by Topology, Lemma 5.24.5 the maps $p_ i : X \to X_ i$ are spectral. For some $i$ we can find opens $U_{a, i}$ and $V_{b, i}$ of $X_ i$ whose inverse images are $U_ a$ and $V_ b$, see Topology, Lemma 5.24.6. The two maps
whose coequalizer is $\mathcal{F}$ correspond by adjunction to two families
of maps of sets. Observe that $p_ i^{-1}(j_{U_{a, i}!}\underline{S_ a}) = j_{U_ a!}\underline{S_ a}$ and $(X_{i'} \to X_ i)^{-1}(j_{U_{a, i}!}\underline{S_ a}) = j_{U_{a, i'}!}\underline{S_ a}$. It follows from Sheaves, Lemma 6.29.3 (and using that $S_ b$ and $B$ are finite sets) that after increasing $i$ we find maps
which give rise to the maps $\beta _ b$ and $\gamma _ b$ after pulling back by $p_ i$. These maps correspond in turn to maps of sheaves
on $X_ i$. Then we can take $Y = X_ i$ and
We omit some details. $\square$
Lemma 17.19.4. Let $X$ be a spectral topological space. Let $\mathcal{B}$ be the set of quasi-compact open subsets of $X$. Let $\mathcal{F}$ be a sheaf of sets as in Equation (17.19.2.1). Then there exist finitely many constructible closed subsets $Z_1, \ldots , Z_ n \subset X$ and finite sets $S_ i$ such that $\mathcal{F}$ is isomorphic to a subsheaf of $\prod (Z_ i \to X)_*\underline{S_ i}$.
Proof. By Lemma 17.19.3 we reduce to the case of a finite sober topological space and a sheaf with finite stalks. In this case $\mathcal{F} \subset \prod _{x \in X} i_{x, *}\mathcal{F}_ x$ where $i_ x : \{ x\} \to X$ is the embedding. We omit the proof that $i_{x, *}\mathcal{F}_ x$ is a constant sheaf on $\overline{\{ x\} }$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)