Lemma 55.5.13. Classification of proper subgraphs of the form
Let $n > 7$. Then given $7$ distinct $(-2)$-indices $i_1, \ldots , i_7$ such that $a_{12}, a_{23}, a_{34}, a_{45}, a_{56}, a_{47}$ are nonzero, then we have the $m$'s, $a$'s, and $w$'s
are given by
\[ \left( \begin{matrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ m_5 \\ m_6 \\ m_7 \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & 0 & 0 & 0 & 0 & 0 \\ w & -2w & w & 0 & 0 & 0 & 0 \\ 0 & w & -2w & w & 0 & 0 & 0 \\ 0 & 0 & w & -2w & w & 0 & w \\ 0 & 0 & 0 & w & -2w & w & 0 \\ 0 & 0 & 0 & 0 & w & -2w & 0 \\ 0 & 0 & 0 & w & 0 & 0 & -2w \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ w \\ w \\ w \\ w \end{matrix} \right) \]with $2m_1 \geq m_2$, $2m_2 \geq m_1 + m_3$, $2m_3 \geq m_2 + m_4$, $2m_4 \geq m_3 + m_5 + m_7$, $2m_5 \geq m_4 + m_6$, $2m_6 \geq m_5$, and $2m_7 \geq m_4$.
Comments (0)