Lemma 55.4.4. Let $n, m_ i, a_{ij}, w_ i, g_ i$ be a numerical type $T$. Assume $n$ is a $(-1)$-index. Let $T'$ be the numerical type constructed in Lemma 55.3.9. There exists an injective map
whose cokernel is an elementary abelian $2$-group.
Lemma 55.4.4. Let $n, m_ i, a_{ij}, w_ i, g_ i$ be a numerical type $T$. Assume $n$ is a $(-1)$-index. Let $T'$ be the numerical type constructed in Lemma 55.3.9. There exists an injective map
whose cokernel is an elementary abelian $2$-group.
Proof. Recall that $n' = n - 1$. Let $e_ i$, resp., $e'_ i$ be the $i$th basis vector of $\mathbf{Z}^{\oplus n}$, resp. $\mathbf{Z}^{\oplus n - 1}$. First we denote
and we set
A computation (which we omit) shows there is a commutative diagram
Since the cokernel of the top arrow is $\mathop{\mathrm{Pic}}\nolimits (T)$ and the cokernel of the bottom arrow is $\mathop{\mathrm{Pic}}\nolimits (T')$, we obtain the desired homomorphism of Picard groups. Since $\frac{w_ i}{w'_ i} \in \{ 1, 2\} $ we see that the cokernel of $\mathop{\mathrm{Pic}}\nolimits (T) \to \mathop{\mathrm{Pic}}\nolimits (T')$ is annihilated by $2$ (because $2e'_ i$ is in the image of $p$ for all $i \leq n - 1$). Finally, we show $\mathop{\mathrm{Pic}}\nolimits (T) \to \mathop{\mathrm{Pic}}\nolimits (T')$ is injective. Let $L = (l_1, \ldots , l_ n)$ be a representative of an element of $\mathop{\mathrm{Pic}}\nolimits (T)$ mapping to zero in $\mathop{\mathrm{Pic}}\nolimits (T')$. Since $q$ is surjective, a diagram chase shows that we can assume $L$ is in the kernel of $p$. This means that $l_ na_{ni}/w'_ i + l_ iw_ i/w'_ i = 0$, i.e., $l_ i = - a_{ni}/w_ i l_ n$. Thus $L$ is the image of $-l_ ne_ n$ under the map $(a_{ij}/w_ j)$ and the lemma is proved. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)