Remark 54.16.6. Let $b : X \to X'$ be the contraction of an exceptional curve of the first kind $E \subset X$. From Lemma 54.16.5 we obtain an identification
where $\mathcal{L}$ corresponds to the pair $(\mathcal{L}', n)$ if and only if $\mathcal{L} = (b^*\mathcal{L}')(-nE)$, i.e., $\mathcal{L}(nE) = b^*\mathcal{L}'$. In fact the proof of Lemma 54.16.5 shows that $\mathcal{L}' = b_*\mathcal{L}(nE)$. Of course the assignment $\mathcal{L} \mapsto \mathcal{L}'$ is a group homomorphism.
Comments (0)