Lemma 29.43.15. Let $g : Y \to S$ and $f : X \to Y$ be morphisms of schemes. If $g \circ f$ is projective and $g$ is separated, then $f$ is projective.
Proof. Choose a closed immersion $X \to \mathbf{P}(\mathcal{E})$ where $\mathcal{E}$ is a quasi-coherent, finite type $\mathcal{O}_ S$-module. Then we get a morphism $X \to \mathbf{P}(\mathcal{E}) \times _ S Y$. This morphism is a closed immersion because it is the composition
where the first morphism is a closed immersion by Schemes, Lemma 26.21.10 (and the fact that $g$ is separated) and the second as the base change of a closed immersion. Finally, the fibre product $\mathbf{P}(\mathcal{E}) \times _ S Y$ is isomorphic to $\mathbf{P}(g^*\mathcal{E})$ and pullback preserves quasi-coherent, finite type modules. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)