The Stacks project

Lemma 29.4.6. Let $S$ be a scheme. Let $X, Y \subset S$ be closed subschemes. Let $X \cup Y$ be the scheme theoretic union of $X$ and $Y$. Let $X \cap Y$ be the scheme theoretic intersection of $X$ and $Y$. Then $X \to X \cup Y$ and $Y \to X \cup Y$ are closed immersions, there is a short exact sequence

\[ 0 \to \mathcal{O}_{X \cup Y} \to \mathcal{O}_ X \times \mathcal{O}_ Y \to \mathcal{O}_{X \cap Y} \to 0 \]

of $\mathcal{O}_ S$-modules, and the diagram

\[ \xymatrix{ X \cap Y \ar[r] \ar[d] & X \ar[d] \\ Y \ar[r] & X \cup Y } \]

is cocartesian in the category of schemes, i.e., $X \cup Y = X \amalg _{X \cap Y} Y$.

Proof. The morphisms $X \to X \cup Y$ and $Y \to X \cup Y$ are closed immersions by Lemma 29.2.2. In the short exact sequence we use the equivalence of Lemma 29.4.1 to think of quasi-coherent modules on closed subschemes of $S$ as quasi-coherent modules on $S$. For the first map in the sequence we use the canonical maps $\mathcal{O}_{X \cup Y} \to \mathcal{O}_ X$ and $\mathcal{O}_{X \cup Y} \to \mathcal{O}_ Y$ and for the second map we use the canonical map $\mathcal{O}_ X \to \mathcal{O}_{X \cap Y}$ and the negative of the canonical map $\mathcal{O}_ Y \to \mathcal{O}_{X \cap Y}$. Then to check exactness we may work affine locally. Let $U = \mathop{\mathrm{Spec}}(A)$ be an affine open of $S$ and let $X \cap U$ and $Y \cap U$ correspond to the ideals $I \subset A$ and $J \subset A$. Then $(X \cup Y) \cap U$ corresponds to $I \cap J \subset A$ and $X \cap Y \cap U$ corresponds to $I + J \subset A$. Thus exactness follows from the exactness of

\[ 0 \to A/I \cap J \to A/I \times A/J \to A/(I + J) \to 0 \]

To show the diagram is cocartesian, suppose we are given a scheme $T$ and morphisms of schemes $f : X \to T$, $g : Y \to T$ agreeing as morphisms $X \cap Y \to T$. Goal: Show there exists a unique morphism $h : X \cup Y \to T$ agreeing with $f$ and $g$. To construct $h$ we may work affine locally on $X \cup Y$, see Schemes, Section 26.14. If $s \in X$, $s \not\in Y$, then $X \to X \cup Y$ is an isomorphism in a neighbourhood of $s$ and it is clear how to construct $h$. Similarly for $s \in Y$, $s \not\in X$. For $s \in X \cap Y$ we can pick an affine open $V = \mathop{\mathrm{Spec}}(B) \subset T$ containing $f(s) = g(s)$. Then we can choose an affine open $U = \mathop{\mathrm{Spec}}(A) \subset S$ containing $s$ such that $f(X \cap U)$ and $g(Y \cap U)$ are contained in $V$. The morphisms $f|_{X \cap U}$ and $g|_{Y \cap V}$ into $V$ correspond to ring maps

\[ B \to A/I \quad \text{and}\quad B \to A/J \]

which agree as maps into $A/(I + J)$. By the short exact sequence displayed above there is a unique lift of these ring homomorphism to a ring map $B \to A/I \cap J$ as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0C4J. Beware of the difference between the letter 'O' and the digit '0'.