Definition 53.16.2. Let $k$ be an algebraically closed field. Let $X$ be an algebraic $1$-dimensional $k$-scheme. Let $x \in X$ be a closed point. We say $x$ defines a multicross singularity if the completion $\mathcal{O}_{X, x}^\wedge $ is isomorphic to (53.16.0.1) for some $n \geq 2$. We say $x$ is a node, or an ordinary double point, or defines a nodal singularity if $n = 2$.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)