Lemma 53.15.1. Let $k$ be an algebraically closed field. Let $k \subset A$ be a ring extension such that $A$ has exactly two $k$-sub algebras, then either $A = k \times k$ or $A = k[\epsilon ]$.
Proof. The assumption means $k \not= A$ and any subring $k \subset C \subset A$ is equal to either $k$ or $A$. Let $t \in A$, $t \not\in k$. Then $A$ is generated by $t$ over $k$. Hence $A = k[x]/I$ for some ideal $I$. If $I = (0)$, then we have the subalgebra $k[x^2]$ which is not allowed. Otherwise $I$ is generated by a monic polynomial $P$. Write $P = \prod _{i = 1}^ d (t - a_ i)$. If $d > 2$, then the subalgebra generated by $(t - a_1)(t - a_2)$ gives a contradiction. Thus $d = 2$. If $a_1 \not= a_2$, then $A = k \times k$, if $a_1 = a_2$, then $A = k[\epsilon ]$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)