Lemma 53.13.10. Let $X$ be a smooth curve over a field $k$. Let $\overline{x} \in X_{\overline{k}}$ be a closed point with image $x \in X$. The ramification index of $\mathcal{O}_{X, x} \subset \mathcal{O}_{X_{\overline{k}}, \overline{x}}$ is the inseparable degree of $\kappa (x)/k$.
Proof. After shrinking $X$ we may assume there is an étale morphism $\pi : X \to \mathbf{A}^1_ k$, see Morphisms, Lemma 29.36.20. Then we can consider the diagram of local rings
The horizontal arrows have ramification index $1$ as they correspond to étale morphisms. Moreover, the extension $\kappa (x)/\kappa (\pi (x))$ is separable hence $\kappa (x)$ and $\kappa (\pi (x))$ have the same inseparable degree over $k$. By multiplicativity of ramification indices it suffices to prove the result when $x$ is a point of the affine line.
Assume $X = \mathbf{A}^1_ k$. In this case, the local ring of $X$ at $x$ looks like
where $P$ is an irreducible monic polynomial over $k$. Then $P(t) = Q(t^ q)$ for some separable polynomial $Q \in k[t]$, see Fields, Lemma 9.12.1. Observe that $\kappa (x) = k[t]/(P)$ has inseparable degree $q$ over $k$. On the other hand, over $\overline{k}$ we can factor $Q(t) = \prod (t - \alpha _ i)$ with $\alpha _ i$ pairwise distinct. Write $\alpha _ i = \beta _ i^ q$ for some unique $\beta _ i \in \overline{k}$. Then our point $\overline{x}$ corresponds to one of the $\beta _ i$ and we conclude because the ramification index of
is indeed equal to $q$ as the uniformizer $P$ maps to $(t - \beta _ i)^ q$ times a unit. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: