Lemma 53.12.3. Let $X \to \mathop{\mathrm{Spec}}(k)$ be smooth of relative dimension $1$ at a closed point $x \in X$. If $\kappa (x)$ is separable over $k$, then for any uniformizer $s$ in the discrete valuation ring $\mathcal{O}_{X, x}$ the element $\text{d}s$ freely generates $\Omega _{X/k, x}$ over $\mathcal{O}_{X, x}$.
Proof. The ring $\mathcal{O}_{X, x}$ is a discrete valuation ring by Algebra, Lemma 10.140.3. Since $x$ is closed $\kappa (x)$ is finite over $k$. Hence if $\kappa (x)/k$ is separable, then any uniformizer $s$ maps to a nonzero element of $\Omega _{X/k, x} \otimes _{\mathcal{O}_{X, x}} \kappa (x)$ by Algebra, Lemma 10.140.4. Since $\Omega _{X/k, x}$ is free of rank $1$ over $\mathcal{O}_{X, x}$ the result follows. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: