Lemma 48.25.5. A syntomic morphism is Gorenstein. Equivalently a flat local complete intersection morphism is Gorenstein.
Proof. Recall that a syntomic morphism is flat and its fibres are local complete intersections over fields, see Morphisms, Lemma 29.30.11. Since a local complete intersection over a field is a Gorenstein scheme by Lemma 48.24.5 we conclude. The properties “syntomic” and “flat and local complete intersection morphism” are equivalent by More on Morphisms, Lemma 37.62.8. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)