Lemma 58.16.2. Let $f : X \to S$ be a proper morphism with geometrically connected fibres. Let $s'' \leadsto s' \leadsto s$ be specializations of points of $S$. A composition of specialization maps $\pi _1(X_{\overline{s}''}) \to \pi _1(X_{\overline{s}'}) \to \pi _1(X_{\overline{s}})$ is a specialization map $\pi _1(X_{\overline{s}''}) \to \pi _1(X_{\overline{s}})$.
Proof. Let $\mathcal{O}_{S, s} \to A$ be the strict henselization constructed using $\kappa (s) \to \kappa (\overline{s})$. Let $A \to \kappa (\overline{s}')$ be the map used to construct the first specialization map. Let $\mathcal{O}_{S, s'} \to A'$ be the strict henselization constructed using $\kappa (s') \subset \kappa (\overline{s}')$. By functoriality of strict henselization, there is a map $A \to A'$ such that the composition with $A' \to \kappa (\overline{s}')$ is the given map (Algebra, Lemma 10.154.6). Next, let $A' \to \kappa (\overline{s}'')$ be the map used to construct the second specialization map. Then it is clear that the composition of the first and second specialization maps is the specialization map $\pi _1(X_{\overline{s}''}) \to \pi _1(X_{\overline{s}})$ constructed using $A \to A' \to \kappa (\overline{s}'')$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)