Lemma 47.24.9. Let $R$ be a Noetherian ring and let $f \in R$. If $\varphi $ denotes the map $R \to R_ f$, then $\varphi ^!$ is isomorphic to $- \otimes _ R^\mathbf {L} R_ f$. More generally, if $\varphi : R \to R'$ is a map such that $\mathop{\mathrm{Spec}}(R') \to \mathop{\mathrm{Spec}}(R)$ is an open immersion, then $\varphi ^!$ is isomorphic to $- \otimes _ R^\mathbf {L} R'$.
Proof. Choose the presentation $R \to R[x] \to R[x]/(fx - 1) = R_ f$ and observe that $fx - 1$ is a nonzerodivisor in $R[x]$. Thus we can apply using Lemma 47.13.10 to compute the functor $\varphi ^!$. Details omitted; note that the shift in the definition of $\varphi ^!$ and in the lemma add up to zero.
In the general case note that $R' \otimes _ R R' = R'$. Hence the result follows from the base change results above. Either Lemma 47.24.4 or Lemma 47.24.5 will do. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)