The Stacks project

Lemma 48.25.11. Let $f : X \to S$ be a morphism of schemes which is flat and locally of finite presentation. Let $x \in X$ with image $s \in S$. Set $d = \dim _ x(X_ s)$. The following are equivalent

  1. $f$ is Gorenstein at $x$,

  2. there exists an open neighbourhood $U \subset X$ of $x$ and a locally quasi-finite morphism $U \to \mathbf{A}^ d_ S$ over $S$ which is Gorenstein at $x$,

  3. there exists an open neighbourhood $U \subset X$ of $x$ and a locally quasi-finite Gorenstein morphism $U \to \mathbf{A}^ d_ S$ over $S$,

  4. for any $S$-morphism $g : U \to \mathbf{A}^ d_ S$ of an open neighbourhood $U \subset X$ of $x$ we have: $g$ is quasi-finite at $x$ $\Rightarrow $ $g$ is Gorenstein at $x$.

In particular, the set of points where $f$ is Gorenstein is open in $X$.

Proof. Choose affine open $U = \mathop{\mathrm{Spec}}(A) \subset X$ with $x \in U$ and $V = \mathop{\mathrm{Spec}}(R) \subset S$ with $f(U) \subset V$. Then $R \to A$ is a flat ring map of finite presentation. Let $\mathfrak p \subset A$ be the prime ideal corresponding to $x$. After replacing $A$ by a principal localization we may assume there exists a quasi-finite map $R[x_1, \ldots , x_ d] \to A$, see Algebra, Lemma 10.125.2. Thus there exists at least one pair $(U, g)$ consisting of an open neighbourhood $U \subset X$ of $x$ and a locally1 quasi-finite morphism $g : U \to \mathbf{A}^ d_ S$.

Having said this, the lemma translates into the following algebra problem (translation omitted). Given $R \to A$ flat and of finite presentation, a prime $\mathfrak p \subset A$ and $\varphi : R[x_1, \ldots , x_ d] \to A$ quasi-finite at $\mathfrak p$ the following are equivalent

  1. $\mathop{\mathrm{Spec}}(\varphi )$ is Gorenstein at $\mathfrak p$, and

  2. $\mathop{\mathrm{Spec}}(A) \to \mathop{\mathrm{Spec}}(R)$ is Gorenstein at $\mathfrak p$.

  3. $\mathop{\mathrm{Spec}}(A) \to \mathop{\mathrm{Spec}}(R)$ is Gorenstein in an open neighbourhood of $\mathfrak p$.

In each case $R[x_1, \ldots , x_ n] \to A$ is flat at $\mathfrak p$ hence by openness of flatness (Algebra, Theorem 10.129.4), we may assume $R[x_1, \ldots , x_ n] \to A$ is flat (replace $A$ by a suitable principal localization). By Algebra, Lemma 10.168.1 there exists $R_0 \subset R$ and $R_0[x_1, \ldots , x_ n] \to A_0$ such that $R_0$ is of finite type over $\mathbf{Z}$ and $R_0 \to A_0$ is of finite type and $R_0[x_1, \ldots , x_ n] \to A_0$ is flat. Note that the set of points where a flat finite type morphism is Gorenstein commutes with base change by Lemma 48.25.8. In this way we reduce to the case where $R$ is Noetherian.

Thus we may assume $X$ and $S$ affine and that we have a factorization of $f$ of the form

\[ X \xrightarrow {g} \mathbf{A}^ n_ S \xrightarrow {p} S \]

with $g$ flat and quasi-finite and $S$ Noetherian. Then $X$ and $\mathbf{A}^ n_ S$ are separated over $S$ and we have

\[ f^!\mathcal{O}_ S = g^!p^!\mathcal{O}_ S = g^!\mathcal{O}_{\mathbf{A}^ n_ S}[n] \]

by know properties of upper shriek functors (Lemmas 48.16.3 and 48.17.3). Hence the equivalence of (a), (b), and (c) by Lemma 48.25.10. $\square$

[1] If $S$ is quasi-separated, then $g$ will be quasi-finite.

Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0C09. Beware of the difference between the letter 'O' and the digit '0'.