Lemma 47.24.7. Let $A \xrightarrow {a} B \xrightarrow {b} C$ be finite type homomorphisms of Noetherian rings. Then there is a transformation of functors $b^! \circ a^! \to (b \circ a)^!$ which is an isomorphism on $D^+(A)$.
Proof. Choose a polynomial ring $P = A[x_1, \ldots , x_ n]$ over $A$ and a surjection $P \to B$. Choose elements $c_1, \ldots , c_ m \in C$ generating $C$ over $B$. Set $Q = P[y_1, \ldots , y_ m]$ and denote $Q' = Q \otimes _ P B = B[y_1, \ldots , y_ m]$. Let $\chi : Q' \to C$ be the surjection sending $y_ j$ to $c_ j$. Picture
By Lemma 47.14.2 for $M \in D(P)$ we have an arrow $\psi ^!(M) \otimes _ B^\mathbf {L} Q' \to (\psi ')^!(M \otimes _ P^\mathbf {L} Q)$ which is an isomorphism whenever $M$ is bounded below. Also we have $\chi ^! \circ (\psi ')^! = (\chi \circ \psi ')^!$ as both functors are adjoint to the restriction functor $D(C) \to D(Q)$ by Section 47.13. Then we see
where we have used in addition to the above More on Algebra, Lemma 15.60.5. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)