The Stacks project

Lemma 22.38.1. Let $R$ be a ring. Let $(B, \text{d})$ be a differential graded $R$-algebra. There exists a quasi-isomorphism $(A, \text{d}) \to (B, \text{d})$ of differential graded $R$-algebras with the following properties

  1. $A$ is K-flat as a complex of $R$-modules,

  2. $A$ is a free graded $R$-algebra.

Proof. First we claim we can find $(A_0, \text{d}) \to (B, \text{d})$ having (1) and (2) inducing a surjection on cohomology. Namely, take a graded set $S$ and for each $s \in S$ a homogeneous element $b_ s \in \mathop{\mathrm{Ker}}(d : B \to B)$ of degree $\deg (s)$ such that the classes $\overline{b}_ s$ in $H^*(B)$ generate $H^*(B)$ as an $R$-module. Then we can set $A_0 = R\langle S \rangle $ with zero differential and $A_0 \to B$ given by mapping $s$ to $b_ s$.

Given $A_0 \to B$ inducing a surjection on cohomology we construct a sequence

\[ A_0 \to A_1 \to A_2 \to \ldots B \]

by induction. Given $A_ n \to B$ we set $S_ n$ be a graded set and for each $s \in S_ n$ we let $a_ s \in \mathop{\mathrm{Ker}}(A_ n \to A_ n)$ be a homogeneous element of degree $\deg (s) + 1$ mapping to a class $\overline{a}_ s$ in $H^*(A_ n)$ which maps to zero in $H^*(B)$. We choose $S_ n$ large enough so that the elements $\overline{a}_ s$ generate $\mathop{\mathrm{Ker}}(H^*(A_ n) \to H^*(B))$ as an $R$-module. Then we set

\[ A_{n + 1} = A_ n\langle S_ n \rangle \]

with differential given by $\text{d}(s) = a_ s$ see discussion above. Then each $(A_ n, \text{d})$ satisfies (1) and (2), we omit the details. The map $H^*(A_ n) \to H^*(B)$ is surjective as this was true for $n = 0$.

It is clear that $A = \mathop{\mathrm{colim}}\nolimits A_ n$ is a free graded $R$-algebra. It is K-flat by More on Algebra, Lemma 15.59.8. The map $H^*(A) \to H^*(B)$ is an isomorphism as it is surjective and injective: every element of $H^*(A)$ comes from an element of $H^*(A_ n)$ for some $n$ and if it dies in $H^*(B)$, then it dies in $H^*(A_{n + 1})$ hence in $H^*(A)$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BZ7. Beware of the difference between the letter 'O' and the digit '0'.