The Stacks project

Lemma 22.34.2. Let $R$ be a ring. Let $(A, \text{d})$, $(B, \text{d})$, and $(C, \text{d})$ be differential graded $R$-algebras. Assume that (22.34.1.1) is an isomorphism. Let $N$ be a differential graded $(A, B)$-bimodule. Let $N'$ be a differential graded $(B, C)$-bimodule. Then the composition

\[ \xymatrix{ D(A, \text{d}) \ar[rr]^{- \otimes _ A^\mathbf {L} N} & & D(B, \text{d}) \ar[rr]^{- \otimes _ B^\mathbf {L} N'} & & D(C, \text{d}) } \]

is isomorphic to $- \otimes _ A^\mathbf {L} N''$ for a differential graded $(A, C)$-bimodule $N''$ described in the proof.

Proof. By Lemma 22.33.3 we may replace $N$ and $N'$ by quasi-isomorphic bimodules. Thus we may assume $N$, resp. $N'$ has property (P) as differential graded $(A, B)$-bimodule, resp. $(B, C)$-bimodule, see Lemma 22.28.4. We claim the lemma holds with the $(A, C)$-bimodule $N'' = N \otimes _ B N'$. To prove this, it suffices to show that

\[ N_ B \otimes _ B^\mathbf {L} N' \longrightarrow (N \otimes _ B N')_ C \]

is an isomorphism in $D(C, \text{d})$, see Lemma 22.34.1.

Let $F_\bullet $ be the filtration on $N$ as in property (P) for bimodules. By Lemma 22.28.5 there is a short exact sequence

\[ 0 \to \bigoplus \nolimits F_ iN \to \bigoplus \nolimits F_ iN \to N \to 0 \]

of differential graded $(A, B)$-bimodules which is split as a sequence of graded $(A, B)$-bimodules. A fortiori this is an admissible short exact sequence of differential graded $B$-modules and this produces a distinguished triangle

\[ \bigoplus \nolimits F_ iN_ B \to \bigoplus \nolimits F_ iN_ B \to N_ B \to \bigoplus \nolimits F_ iN_ B[1] \]

in $D(B, \text{d})$. Using that $- \otimes _ B^\mathbf {L} N'$ is an exact functor of triangulated categories and commutes with direct sums and using that $- \otimes _ B N'$ transforms admissible exact sequences into admissible exact sequences and commutes with direct sums we reduce to proving that

\[ (F_ pN)_ B \otimes _ B^\mathbf {L} N' \longrightarrow (F_ pN)_ B \otimes _ B N' \]

is a quasi-isomorphism for all $p$. Repeating the argument with the short exact sequences of $(A, B)$-bimodules

\[ 0 \to F_ pN \to F_{p + 1}N \to F_{p + 1}N/F_ pN \to 0 \]

which are split as graded $(A, B)$-bimodules we reduce to showing the same statement for $F_{p + 1}N/F_ pN$. Since these modules are direct sums of shifts of $(A \otimes _ R B)_ B$ we reduce to showing that

\[ (A \otimes _ R B)_ B \otimes _ B^\mathbf {L} N' \longrightarrow (A \otimes _ R B)_ B \otimes _ B N' \]

is a quasi-isomorphism.

Choose a filtration $F_\bullet $ on $N'$ as in property (P) for bimodules. Choose a quasi-isomorphism $P \to (A \otimes _ R B)_ B$ of differential graded $B$-modules where $P$ has property (P). We have to show that $P \otimes _ B N' \to (A \otimes _ R B)_ B \otimes _ B N'$ is a quasi-isomorphism because $P \otimes _ B N'$ represents $(A \otimes _ R B)_ B \otimes _ B^\mathbf {L} N'$ in $D(C, \text{d})$ by the construction in Lemma 22.33.2. As $N' = \mathop{\mathrm{colim}}\nolimits F_ pN'$ we find that it suffices to show that $P \otimes _ B F_ pN' \to (A \otimes _ R B)_ B \otimes _ B F_ pN'$ is a quasi-isomorphism. Using the short exact sequences $0 \to F_ pN' \to F_{p + 1}N' \to F_{p + 1}N'/F_ pN' \to 0$ which are split as graded $(B, C)$-bimodules we reduce to showing $P \otimes _ B F_{p + 1}N'/F_ pN' \to (A \otimes _ R B)_ B \otimes _ B F_{p + 1}N'/F_ pN'$ is a quasi-isomorphism for all $p$. Then finally using that $F_{p + 1}N'/F_ pN'$ is a direct sum of shifts of ${}_ B(B \otimes _ R C)_ C$ we conclude that it suffices to show that

\[ P \otimes _ B {}_ B(B \otimes _ R C)_ C \to (A \otimes _ R B)_ B \otimes _ B {}_ B(B \otimes _ R C)_ C \]

is a quasi-isomorphism. Since $P \to (A \otimes _ R B)_ B$ is a resolution by a module satisfying property (P) this map of differential graded $C$-modules represents the morphism (22.34.1.1) in $D(C, \text{d})$ and the proof is complete. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BZ5. Beware of the difference between the letter 'O' and the digit '0'.