The Stacks project

Lemma 22.33.8. Let $R \to R'$ be a ring map. Let $(A, \text{d})$ be a differential graded $R$-algebra. Let $(A', \text{d})$ be the base change, i.e., $A' = A \otimes _ R R'$. If $A$ is K-flat as a complex of $R$-modules, then

  1. $- \otimes _ A^\mathbf {L} A' : D(A, \text{d}) \to D(A', \text{d})$ is equal to the right derived functor of

    \[ K(A, \text{d}) \longrightarrow K(A', \text{d}),\quad M \longmapsto M \otimes _ R R' \]
  2. the diagram

    \[ \xymatrix{ D(A, \text{d}) \ar[r]_{- \otimes _ A^\mathbf {L} A'} \ar[d]_{restriction} & D(A', \text{d}) \ar[d]^{restriction} \\ D(R) \ar[r]^{- \otimes _ R^\mathbf {L} R'} & D(R') } \]

    commutes, and

  3. if $M$ is K-flat as a complex of $R$-modules, then the differential graded $A'$-module $M \otimes _ R R'$ represents $M \otimes _ A^\mathbf {L} A'$.

Proof. For any differential graded $A$-module $M$ there is a canonical map

\[ c_ M : M \otimes _ R R' \longrightarrow M \otimes _ A A' \]

Let $P$ be a differential graded $A$-module with property (P). We claim that $c_ P$ is an isomorphism and that $P$ is K-flat as a complex of $R$-modules. This will prove all the results stated in the lemma by formal arguments using the definition of derived tensor product in Lemma 22.33.2 and More on Algebra, Section 15.59.

Let $F_\bullet $ be the filtration on $P$ showing that $P$ has property (P). Note that $c_ A$ is an isomorphism and $A$ is K-flat as a complex of $R$-modules by assumption. Hence the same is true for direct sums of shifts of $A$ (you can use More on Algebra, Lemma 15.59.8 to deal with direct sums if you like). Hence this holds for the complexes $F_{p + 1}P/F_ pP$. Since the short exact sequences

\[ 0 \to F_ pP \to F_{p + 1}P \to F_{p + 1}P/F_ pP \to 0 \]

are split exact as sequences of graded modules, we can argue by induction that $c_{F_ pP}$ is an isomorphism for all $p$ and that $F_ pP$ is K-flat as a complex of $R$-modules (use More on Algebra, Lemma 15.59.5). Finally, using that $P = \mathop{\mathrm{colim}}\nolimits F_ pP$ we conclude that $c_ P$ is an isomorphism and that $P$ is K-flat as a complex of $R$-modules (use More on Algebra, Lemma 15.59.8). $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BYZ. Beware of the difference between the letter 'O' and the digit '0'.