Example 22.33.6. Let $R$ be a ring. Let $(A, \text{d}) \to (B, \text{d})$ be a homomorphism of differential graded $R$-algebras. Then we can view $B$ as a differential graded $(A, B)$-bimodule and we get a functor
By Lemma 22.33.5 the left adjoint of this is the functor $R\mathop{\mathrm{Hom}}\nolimits (B, -)$. For a differential graded $B$-module let us denote $N_ A$ the differential graded $A$-module obtained from $N$ by restriction via $A \to B$. Then we clearly have a canonical isomorphism
functorial in the $B$-module $N$. Thus we see that $R\mathop{\mathrm{Hom}}\nolimits (B, -)$ is the restriction functor and we obtain
bifunctorially in $M$ and $N$ exactly as in the case of commutative rings. Finally, observe that restriction is a tensor functor as well, since $N_ A = N \otimes _ B {}_ BB_ A = N \otimes _ B^\mathbf {L} {}_ BB_ A$ where ${}_ BB_ A$ is $B$ viewed as a differential graded $(B, A)$-bimodule.
Comments (0)