Lemma 15.59.6. Let $R$ be a ring. Let $0 \to K_1^\bullet \to K_2^\bullet \to K_3^\bullet \to 0$ be a short exact sequence of complexes. If $K_3^ n$ is flat for all $n \in \mathbf{Z}$ and two out of three of $K_ i^\bullet $ are K-flat, so is the third.
Proof. Let $L^\bullet $ be a complex of $R$-modules. Then
is a short exact sequence of complexes. Namely, for each $n, m$ the sequence of modules $0 \to L^ n \otimes _ R K_1^ m \to L^ n \otimes _ R K_2^ m \to L^ n \otimes _ R K_3^ m \to 0$ is exact by Algebra, Lemma 10.39.12 and the sequence of complexes is a direct sum of these. Thus the lemma follows from this and the fact that in a short exact sequence of complexes if two out of three are acyclic, so is the third. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: