The Stacks project

Lemma 49.14.1. Let $A \to B$ be a map of Noetherian rings. Consider the conditions

  1. nonzerodivisors of $A$ map to nonzerodivisors of $B$,

  2. (1) holds and $Q(A) \to Q(A) \otimes _ A B$ is flat,

  3. $A \to B_\mathfrak q$ is flat for every $\mathfrak q \in \text{Ass}(B)$,

  4. (3) holds and $A \to B_\mathfrak q$ is flat for every $\mathfrak q$ lying over an element in $\text{Ass}(A)$.

Then we have the following implications

\[ \xymatrix{ (1) & (2) \ar@{=>}[l] \ar@{=>}[d] \\ (3) \ar@{=>}[u] & (4) \ar@{=>}[l] } \]

If going up holds for $A \to B$ then (2) and (4) are equivalent.

Proof. The horizontal implications in the diagram are trivial. Let $S \subset A$ be the set of nonzerodivisors so that $Q(A) = S^{-1}A$ and $Q(A) \otimes _ A B = S^{-1}B$. Recall that $S = A \setminus \bigcup _{\mathfrak p \in \text{Ass}(A)} \mathfrak p$ by Algebra, Lemma 10.63.9. Let $\mathfrak q \subset B$ be a prime lying over $\mathfrak p \subset A$.

Assume (2). If $\mathfrak q \in \text{Ass}(B)$ then $\mathfrak q$ consists of zerodivisors, hence (1) implies the same is true for $\mathfrak p$. Hence $\mathfrak p$ corresponds to a prime of $S^{-1}A$. Hence $A \to B_\mathfrak q$ is flat by our assumption (2). If $\mathfrak q$ lies over an associated prime $\mathfrak p$ of $A$, then certainly $\mathfrak p \in \mathop{\mathrm{Spec}}(S^{-1}A)$ and the same argument works.

Assume (3). Let $f \in A$ be a nonzerodivisor. If $f$ were a zerodivisor on $B$, then $f$ is contained in an associated prime $\mathfrak q$ of $B$. Since $A \to B_\mathfrak q$ is flat by assumption, we conclude that $\mathfrak p$ is an associated prime of $A$ by Algebra, Lemma 10.65.3. This would imply that $f$ is a zerodivisor on $A$, a contradiction.

Assume (4) and going up for $A \to B$. We already know (1) holds. If $\mathfrak q$ corresponds to a prime of $S^{-1}B$ then $\mathfrak p$ is contained in an associated prime $\mathfrak p'$ of $A$. By going up there exists a prime $\mathfrak q'$ containing $\mathfrak q$ and lying over $\mathfrak p$. Then $A \to B_{\mathfrak q'}$ is flat by (4). Hence $A \to B_{\mathfrak q}$ is flat as a localization. Thus $A \to S^{-1}B$ is flat and so is $S^{-1}A \to S^{-1}B$, see Algebra, Lemma 10.39.18. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BWL. Beware of the difference between the letter 'O' and the digit '0'.