Lemma 49.6.5. Let $A \to B$ be a quasi-finite homomorphism of Noetherian rings.
If $A \to A'$ is a flat map of Noetherian rings, then
\[ \xymatrix{ \omega _{B/A} \times J \ar[r] \ar[d] & B \ar[d] \\ \omega _{B'/A'} \times J' \ar[r] & B' } \]is commutative where notation as in Lemma 49.6.2 and horizontal arrows are given by (49.6.4.1).
If $B = B_1 \times B_2$, then
\[ \xymatrix{ \omega _{B/A} \times J \ar[r] \ar[d] & B \ar[d] \\ \omega _{B_ i/A} \times J_ i \ar[r] & B_ i } \]is commutative for $i = 1, 2$ where notation as in Lemma 49.6.1 and horizontal arrows are given by (49.6.4.1).
Comments (0)