Lemma 4.19.3. Let $\mathcal{I}$ be a category. Let $\mathcal{J}$ be a full subcategory. Assume that $\mathcal{I}$ is filtered. Assume also that for any object $i$ of $\mathcal{I}$, there exists a morphism $i \to j$ to some object $j$ of $\mathcal{J}$. Then $\mathcal{J}$ is filtered and cofinal in $\mathcal{I}$.
Proof. Omitted. Pleasant exercise of the notions involved. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (1)
Comment #9750 by ElĂas Guisado on
There are also: