Lemma 15.112.7. With assumptions and notation as in Lemma 15.112.5. The inertia character $\theta : I \to \mu _ e(\kappa (\mathfrak m))$ satisfies the following property
for $\tau \in D$ and $\sigma \in I$.
Lemma 15.112.7. With assumptions and notation as in Lemma 15.112.5. The inertia character $\theta : I \to \mu _ e(\kappa (\mathfrak m))$ satisfies the following property
for $\tau \in D$ and $\sigma \in I$.
Proof. The formula makes sense as $I$ is a normal subgroup of $D$ and as $\tau $ acts on $\kappa (\mathfrak m)$ via the map $D \to \text{Aut}(\kappa (\mathfrak m))$ discussed in Lemma 15.112.4 for example. Recall the construction of $\theta $. Choose a uniformizer $\pi $ of $B_\mathfrak m$ and for $\sigma \in I$ write $\sigma (\pi ) = \theta _\sigma \pi $. Then $\theta (\sigma )$ is the image $\overline{\theta }_\sigma $ of $\theta _\sigma $ in the residue field. For any $\tau \in D$ we can write $\tau (\pi ) = \theta _\tau \pi $ for some unit $\theta _\tau $. Then $\theta _{\tau ^{-1}} = \tau ^{-1}(\theta _\tau ^{-1})$. We compute
However, since $\sigma $ acts trivially modulo $\pi $ we see that the product $\tau (\sigma (\tau ^{-1}(\theta _\tau ^{-1}))) \theta _\tau $ maps to $1$ in the residue field. This proves the lemma. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)