Lemma 49.2.3. Let $A \to B$ be a quasi-finite map of Noetherian rings.
If $A \to B$ factors as $A \to A_ f \to B$ for some $f \in A$, then $\omega _{B/A} = \omega _{B/A_ f}$.
If $g \in B$, then $(\omega _{B/A})_ g = \omega _{B_ g/A}$.
If $f \in A$, then $\omega _{B_ f/A_ f} = (\omega _{B/A})_ f$.
Comments (0)