Lemma 53.5.1. Let $X$ be a proper scheme of dimension $\leq 1$ over a field $k$. With $\omega _ X^\bullet $ and $\omega _ X$ as in Lemma 53.4.1 we have
If $X$ is Cohen-Macaulay and equidimensional of dimension $1$, then
Lemma 53.5.1. Let $X$ be a proper scheme of dimension $\leq 1$ over a field $k$. With $\omega _ X^\bullet $ and $\omega _ X$ as in Lemma 53.4.1 we have
If $X$ is Cohen-Macaulay and equidimensional of dimension $1$, then
Proof. We define the right hand side of the first formula as follows:
This is well defined because $\omega _ X^\bullet $ is in $D^ b_{\textit{Coh}}(\mathcal{O}_ X)$, but also because
which is always finite dimensional and nonzero only if $i = 0, -1$. This of course also proves the first formula. The second is a consequence of the first because $\omega _ X^\bullet = \omega _ X[1]$ in the CM case, see Lemma 53.4.2. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)