Lemma 15.110.1. Let $\varphi : A \to B$ be a surjection of rings. Let $G$ be a finite group of order $n$ acting on $\varphi : A \to B$. If $b \in B^ G$, then there exists a monic polynomial $P \in A^ G[T]$ which maps to $(T - b)^ n$ in $B^ G[T]$.
Proof. Choose $a \in A$ lifting $b$ and set $P = \prod _{\sigma \in G} (T - \sigma (a))$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: