Lemma 58.3.1. Let $\mathcal{C}$ be a category and let $F : \mathcal{C} \to \textit{Sets}$ be a functor. The map (58.3.0.1) identifies $\text{Aut}(F)$ with a closed subgroup of $\prod _{X \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})} \text{Aut}(F(X))$. In particular, if $F(X)$ is finite for all $X$, then $\text{Aut}(F)$ is a profinite group.
Proof. Let $\xi = (\gamma _ X) \in \prod \text{Aut}(F(X))$ be an element not in $\text{Aut}(F)$. Then there exists a morphism $f : X \to X'$ of $\mathcal{C}$ and an element $x \in F(X)$ such that $F(f)(\gamma _ X(x)) \not= \gamma _{X'}(F(f)(x))$. Consider the open neighbourhood $U = \{ \gamma \in \text{Aut}(F(X)) \mid \gamma (x) = \gamma _ X(x)\} $ of $\gamma _ X$ and the open neighbourhood $U' = \{ \gamma ' \in \text{Aut}(F(X')) \mid \gamma '(F(f)(x)) = \gamma _{X'}(F(f)(x))\} $. Then $U \times U' \times \prod _{X'' \not= X, X'} \text{Aut}(F(X''))$ is an open neighbourhood of $\xi $ not meeting $\text{Aut}(F)$. The final statement follows from the fact that $\prod \text{Aut}(F(X))$ is a profinite space if each $F(X)$ is finite. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #8015 by Rijul Saini on
Comment #8198 by Aise Johan de Jong on
There are also: