Lemma 95.6.1. The functor
\[ p : \textit{FÉt} \longrightarrow (\mathit{Sch}/S)_{fppf} \]
defines a stack over $(\mathit{Sch}/S)_{fppf}$.
Lemma 95.6.1. The functor
defines a stack over $(\mathit{Sch}/S)_{fppf}$.
Proof. Fppf descent for finite étale morphisms follows from Descent, Lemmas 35.37.1, 35.23.23, and 35.23.29. Details omitted. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #6272 by Owen on
Comment #6394 by Johan on