Lemma 58.23.2. In Situation 58.19.1 assume
$A$ is $f$-adically complete,
$f$ is a nonzerodivisor,
$H^1_\mathfrak m(A/fA)$ and $H^2_\mathfrak m(A/fA)$ are finite $A$-modules.
Then the restriction functor
\[ \mathop{\mathrm{colim}}\nolimits _{U_0 \subset U' \subset U\text{ open}} \textit{FÉt}_{U'} \longrightarrow \textit{FÉt}_{U_0} \]
is an equivalence.
Comments (0)