The Stacks project

Remark 20.37.3. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $(K_ n)$ be an inverse system in $D(\mathcal{O}_ X)$. Set $K = R\mathop{\mathrm{lim}}\nolimits K_ n$. For each $n$ and $m$ let $\mathcal{H}^ m_ n = H^ m(K_ n)$ be the $m$th cohomology sheaf of $K_ n$ and similarly set $\mathcal{H}^ m = H^ m(K)$. Let us denote $\underline{\mathcal{H}}^ m_ n$ the presheaf

\[ U \longmapsto \underline{\mathcal{H}}^ m_ n(U) = H^ m(U, K_ n) \]

Similarly we set $\underline{\mathcal{H}}^ m(U) = H^ m(U, K)$. By Lemma 20.32.3 we see that $\mathcal{H}^ m_ n$ is the sheafification of $\underline{\mathcal{H}}^ m_ n$ and $\mathcal{H}^ m$ is the sheafification of $\underline{\mathcal{H}}^ m$. Here is a diagram

\[ \xymatrix{ K \ar@{=}[d] & \underline{\mathcal{H}}^ m \ar[d] \ar[r] & \mathcal{H}^ m \ar[d] \\ R\mathop{\mathrm{lim}}\nolimits K_ n & \mathop{\mathrm{lim}}\nolimits \underline{\mathcal{H}}^ m_ n \ar[r] & \mathop{\mathrm{lim}}\nolimits \mathcal{H}^ m_ n } \]

In general it may not be the case that $\mathop{\mathrm{lim}}\nolimits \mathcal{H}^ m_ n$ is the sheafification of $\mathop{\mathrm{lim}}\nolimits \underline{\mathcal{H}}^ m_ n$. If $U \subset X$ is an open, then we have short exact sequences

20.37.3.1
\begin{equation} \label{cohomology-equation-ses-Rlim-over-U} 0 \to R^1\mathop{\mathrm{lim}}\nolimits \underline{\mathcal{H}}^{m - 1}_ n(U) \to \underline{\mathcal{H}}^ m(U) \to \mathop{\mathrm{lim}}\nolimits \underline{\mathcal{H}}^ m_ n(U) \to 0 \end{equation}

by Lemma 20.37.1.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BKQ. Beware of the difference between the letter 'O' and the digit '0'.