The Stacks project

Lemma 58.21.1. Let $(A, \mathfrak m)$ be a Noetherian local ring with $\dim (A) \geq 1$. Let $f \in \mathfrak m$. Then there exist a $\mathfrak p \in V(f)$ with $\dim (A_\mathfrak p) = 1$.

Proof. By induction on $\dim (A)$. If $\dim (A) = 1$, then $\mathfrak p = \mathfrak m$ works. If $\dim (A) > 1$, then let $Z \subset \mathop{\mathrm{Spec}}(A)$ be an irreducible component of dimension $> 1$. Then $V(f) \cap Z$ has dimension $> 0$ (Algebra, Lemma 10.60.13). Pick a prime $\mathfrak q \in V(f) \cap Z$, $\mathfrak q \not= \mathfrak m$ corresponding to a closed point of the punctured spectrum of $A$; this is possible by Properties, Lemma 28.6.4. Then $\mathfrak q$ is not the generic point of $Z$. Hence $0 < \dim (A_\mathfrak q) < \dim (A)$ and $f \in \mathfrak q A_\mathfrak q$. By induction on the dimension we can find $f \in \mathfrak p \subset A_\mathfrak q$ with $\dim ((A_\mathfrak q)_\mathfrak p) = 1$. Then $\mathfrak p \cap A$ works. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BJG. Beware of the difference between the letter 'O' and the digit '0'.