Lemma 49.3.1. Let $\pi : X \to Y$ be a morphism of schemes which is finite locally free. Then $\pi $ is étale if and only if its discriminant is empty.
Proof. By Morphisms, Lemma 29.36.8 it suffices to check that the fibres of $\pi $ are étale. Since the construction of the trace pairing commutes with base change we reduce to the following question: Let $k$ be a field and let $A$ be a finite dimensional $k$-algebra. Show that $A$ is étale over $k$ if and only if the trace pairing $Q_{A/k} : A \times A \to k$, $(a, b) \mapsto \text{Trace}_{A/k}(ab)$ is nondegenerate.
Assume $Q_{A/k}$ is nondegenerate. If $a \in A$ is a nilpotent element, then $ab$ is nilpotent for all $b \in A$ and we conclude that $Q_{A/k}(a, -)$ is identically zero. Hence $A$ is reduced. Then we can write $A = K_1 \times \ldots \times K_ n$ as a product where each $K_ i$ is a field (see Algebra, Lemmas 10.53.2, 10.53.6, and 10.25.1). In this case the quadratic space $(A, Q_{A/k})$ is the orthogonal direct sum of the spaces $(K_ i, Q_{K_ i/k})$. It follows from Fields, Lemma 9.20.7 that each $K_ i$ is separable over $k$. This means that $A$ is étale over $k$ by Algebra, Lemma 10.143.4. The converse is proved by reading the argument backwards. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)