Lemma 15.31.2. Let $a, a_2, \ldots , a_ r$ be an $H_1$-regular sequence in a ring $R$ (for example a Koszul regular sequence or a regular sequence, see Lemmas 15.30.2 and 15.30.3). With $I = (a, a_2, \ldots , a_ r)$ the blowup algebra $R' = R[\frac{I}{a}]$ is isomorphic to $R'' = R[y_2, \ldots , y_ r]/(a y_ i - a_ i)$.
Proof. By Algebra, Lemma 10.70.6 it suffices to show that $R''$ is $a$-torsion free.
We claim $a, ay_2 - a_2, \ldots , ay_ n - a_ r$ is a $H_1$-regular sequence in $R[y_2, \ldots , y_ r]$. Namely, the map
used to define the Koszul complex on $a, ay_2 - a_2, \ldots , ay_ n - a_ r$ is isomorphic to the map
used to the define the Koszul complex on $a, a_2, \ldots , a_ r$ via the isomorphism
sending $(b_1, \ldots , b_ r)$ to $(b_1 - b_2y_2 \ldots - b_ ry_ r, -b_2, \ldots , - b_ r)$. By Lemma 15.28.3 these Koszul complexes are isomorphic. By Lemma 15.30.5 applied to the flat ring map $R \to R[y_2, \ldots , y_ r]$ we conclude our claim is true. By Lemma 15.28.8 we see that the Koszul complex $K$ on $a, ay_2 - a_2, \ldots , ay_ n - a_ r$ is the cone on $a : L \to L$ where $L$ is the Koszul complex on $ay_2 - a_2, \ldots , ay_ n - a_ r$. Since $H_1(K) = 0$ by the claim, we conclude that $a : H_0(L) \to H_0(L)$ is injective, in other words that $R'' = R[y_2, \ldots , y_ r]/(a y_ i - a_ i)$ has no nonzero $a$-torsion elements as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #3792 by Kestutis Cesnavicius on
Comment #3914 by Johan on