The Stacks project

Lemma 54.11.4. Let $(A, \mathfrak m, \kappa )$ be a Nagata local normal domain of dimension $2$. Assume $A$ defines a rational singularity and that the completion $A^\wedge $ of $A$ is normal. Then

  1. $A^\wedge $ defines a rational singularity, and

  2. if $X \to \mathop{\mathrm{Spec}}(A)$ is the blowing up in $\mathfrak m$, then for a closed point $x \in X$ the completion $\mathcal{O}_{X, x}$ is normal.

Proof. Let $Y \to \mathop{\mathrm{Spec}}(A^\wedge )$ be a modification with $Y$ normal. We have to show that $H^1(Y, \mathcal{O}_ Y) = 0$. By Varieties, Lemma 33.17.3 $Y \to \mathop{\mathrm{Spec}}(A^\wedge )$ is an isomorphism over the punctured spectrum $U^\wedge = \mathop{\mathrm{Spec}}(A^\wedge ) \setminus \{ \mathfrak m^\wedge \} $. By Lemma 54.7.2 there exists a $U^\wedge $-admissible blowup $Y' \to \mathop{\mathrm{Spec}}(A^\wedge )$ dominating $Y$. By Lemma 54.11.3 we find there exists a $U$-admissible blowup $X \to \mathop{\mathrm{Spec}}(A)$ whose base change to $A^\wedge $ dominates $Y$. Since $A$ is Nagata, we can replace $X$ by its normalization after which $X \to \mathop{\mathrm{Spec}}(A)$ is a normal modification (but possibly no longer a $U$-admissible blowup). Then $H^1(X, \mathcal{O}_ X) = 0$ as $A$ defines a rational singularity. It follows that $H^1(X \times _{\mathop{\mathrm{Spec}}(A)} \mathop{\mathrm{Spec}}(A^\wedge ), \mathcal{O}_{X \times _{\mathop{\mathrm{Spec}}(A)} \mathop{\mathrm{Spec}}(A^\wedge )}) = 0$ by flat base change (Cohomology of Schemes, Lemma 30.5.2 and flatness of $A \to A^\wedge $ by Algebra, Lemma 10.97.2). We find that $H^1(Y, \mathcal{O}_ Y) = 0$ by Lemma 54.8.1.

Finally, let $X \to \mathop{\mathrm{Spec}}(A)$ be the blowing up of $\mathop{\mathrm{Spec}}(A)$ in $\mathfrak m$. Then $Y = X \times _{\mathop{\mathrm{Spec}}(A)} \mathop{\mathrm{Spec}}(A^\wedge )$ is the blowing up of $\mathop{\mathrm{Spec}}(A^\wedge )$ in $\mathfrak m^\wedge $. By Lemma 54.9.4 we see that both $Y$ and $X$ are normal. On the other hand, $A^\wedge $ is excellent (More on Algebra, Proposition 15.52.3) hence every affine open in $Y$ is the spectrum of an excellent normal domain (More on Algebra, Lemma 15.52.2). Thus for $y \in Y$ the ring map $\mathcal{O}_{Y, y} \to \mathcal{O}_{Y, y}^\wedge $ is regular and by More on Algebra, Lemma 15.42.2 we find that $\mathcal{O}_{Y, y}^\wedge $ is normal. If $x \in X$ is a closed point of the special fibre, then there is a unique closed point $y \in Y$ lying over $x$. Since $\mathcal{O}_{X, x} \to \mathcal{O}_{Y, y}$ induces an isomorphism on completions (Lemma 54.11.1) we conclude. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BG7. Beware of the difference between the letter 'O' and the digit '0'.