Lemma 31.16.6. Let $X$ be a Noetherian separated scheme. Let $U \subset X$ be a dense affine open. If $\mathcal{O}_{X, x}$ is a UFD for all $x \in X \setminus U$, then there exists an effective Cartier divisor $D \subset X$ with $U = X \setminus D$.
Proof. Since $X$ is Noetherian, the complement $X \setminus U$ has finitely many irreducible components $D_1, \ldots , D_ r$ (Properties, Lemma 28.5.7 applied to the reduced induced subscheme structure on $X \setminus U$). Each $D_ i \subset X$ has codimension $1$ by Lemma 31.16.5 (and Properties, Lemma 28.10.3). Thus $D_ i$ is an effective Cartier divisor by Lemma 31.15.7. Hence we can take $D = D_1 + \ldots + D_ r$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: