Example 48.9.8. If $i : Z \to X$ is closed immersion of Noetherian schemes, then the diagram
\[ \xymatrix{ i_*a(K) \ar[rr]_-{\text{Tr}_{i, K}} \ar@{=}[d] & & K \ar@{=}[d] \\ i_*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{O}_ Z, K) \ar@{=}[r] & R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(i_*\mathcal{O}_ Z, K) \ar[r] & K } \]
is commutative for $K \in D_\mathit{QCoh}^+(\mathcal{O}_ X)$. Here the horizontal equality sign is Lemma 48.9.3 and the lower horizontal arrow is induced by the map $\mathcal{O}_ X \to i_*\mathcal{O}_ Z$. The commutativity of the diagram is a consequence of Lemma 48.9.7.
Comments (0)
There are also: