Lemma 36.27.4. Let $S$ be a Noetherian scheme. Let $f : X \to S$ be a flat proper morphism of schemes. Let $E \in D(\mathcal{O}_ X)$ be perfect. Then $Rf_*E$ is a perfect object of $D(\mathcal{O}_ S)$.
Proof. We claim that Lemma 36.27.1 applies. Conditions (1) and (2) are immediate. Condition (3) is local on $X$. Thus we may assume $X$ and $S$ affine and $E$ represented by a strictly perfect complex of $\mathcal{O}_ X$-modules. Since $\mathcal{O}_ X$ is flat as a sheaf of $f^{-1}\mathcal{O}_ S$-modules we find that condition (3) is satisfied. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)